
The Master-Slave Paradigm in Parallel

Computer and Industrial Settings*

Sartaj Sahnit George Vairaktarakid

Abstract

The master-slave paradigm finds important applications in parallel computer

scheduling, semiconductor testing, machine scheduling, transportation, maintenance

management and other industrial settings. In the master-slave model considered in

this paper a set of jobs is to be processed by a system of processors. Each job

consists of a preprocessing task, a slave task and a postprocessing task that must

be executed in this order. The pre- and post-processing tasks are to be processed

by a master processor while the slave task is processed by a slave processor. In

this paper, we motivate the master-slave model and develop bounded performance

approximation algorithms for the unconstrained makespan minimization problem

as well as for multiple master systems.

*This work was supported in part by the National Science Foundation under grant MIP-9103379 and

the Army Research Office under grant DAA H0495-l-0111.

‘Department of Computer and Information Sciences, University of Florida, Gainesville, FL 32611.
iCollege of Business Administration, Management Department, Marquette University, Milwaukee, WI

53233.

Journal of Global Optimization 9: 357-377, 1996.
0 1996 Kluwer Academic Publishers. Printed in the Netherlands.

357

358 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

1 Introduction

The master-slave paradigm involves two sets of processors. The master processors

that are responsible for pre- and post-processing of work orders, and the slave

processors that are responsible for the actual execution of the orders. The number

of slave processors is no less than the number of work orders. Applications of

this paradigm include parallel computing, semiconductor testing and problems in

transportation as will be described shortly.

First we give a brief description of the model under consideration. A set of jobs

is to be processed by a system of master and slave processors. Each job has three

tasks associated with it. The first is a preprocessing task, the second is a slave task,

and the third a postprocessing task. The tasks of each job are to be performed

in the order: preprocessing, slave, postprocessing. Let a;, bi, and ci, respectively,

denote the preprocessing, slave, and postprocessing tasks (and task times) of job

i. All task times are assumed to be greater than zero (i.e., ai > 0, bi > 0, and

ci > 0, for all i). The available processors are divided into two categories: master

and slave. If n denotes the number of jobs, then no schedule can use more than

rr slaves. Hence we may assume that there are exactly 7~ slaves. The makespan or

finish time of a schedule is the earliest time at which ah tasks have been completed.

The case where there is a single master processor has been considered in [19]. In this

paper we consider the problem of minimizing makespan in a system that consists

of several master processors; we shah refer to this generalization as multiple master

systems.

Several applications of the master-slave model are found in parallel computer

scheduling. A common parallel programming paradigm involves the use of a single

main computational thread that employs the fork and join operations to spawn

parallel tasks/threads and then to synchronize following the completion of these

tasks. The fork operation involves the passing of varying amounts of data to remote

processors that will execute the spawned threads (we assume that each spawned

thread will be executed on a different processor). These processors will, in turn,

return the results to the main thread. So, associated which each of the spawned

threads, we have three amounts of work:

THE MASTER-SLAVE PARADIGM 359

1. Preprocessing by main thread. This is the work needed to initiate the thread.

It includes the effort expended in collecting the data needed by the remote

processor (in case of a distributed memory environment); overheads involved

in transmitting this data to the remote processor, etc.

2. Work done in the thread. This includes the computational activity assigned to

the remote processor, the work this processor must do to receive the data and

send back the results, and the transmission times in receiving and sending.

3. Post-processing by the main thread. This represents the effort expended in

receiving the answers and performing any postprocessing on them.

Since the different threads may execute very different pieces of code, the relative

values of the amounts of work involved in preprocessing, in thread execution, and

in postprocessing can vary widely from thread to thread.

The fork-join paradigm can be used to model, for example, one of the modes of

operation of the nCube hypercube computer. In this, the main program thread runs

on the host computer which serves as the master processor. This program initiates

parallel tasks on the hypercube processors when the host computation reaches a

point where parallelism can be exploited. For each parallel task, the host needs to

gather the data needed by the task and also consume the results from the tasks when

they are complete. These correspond to pre- and post-processing activities. The

tasks themselves run on the hypercube processors and correspond to slave activities.

The number of parallel tasks created is generally equal to the number of available

hypercube processors.

For example, if the master processor reaches a point in its computation when

two matrices A and B are to be multiplied, then it would partition the matrix

multiplication problem into p (p is the number of slave processors) multiplication

problems each involving a submatrix of A and B. These submatrix pairs together

with the multilpication code would be transmitted to the p slaves (one pair per

slave); the slaves would execute the code once they have received the data and

code; the slaves would transmit the product submatrix back to the master; and

finally the master would store the received submatrix of C into the proper locations

in C. Since matrix multiplication is a highly structured problem, it is possible to

partition the matrices so that the amount of preprocessing work for each slave task is

360 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

the same, the amount of postprocessing work is the same for each task, the amount

of work done by each slave is the same (this assumes uniform data transmission

times between the master and slaves). When the submatrices are square, the task

preprocessing time is roughly twice the postprocessing time.

As another parallel computing example, suppose we are working with a computer

vision or VLSI CAD problem that involves objects in a two-dimensional region.

To process these objects, the region may be divided into p parts; each part is

sent to a slave processor; the results are returned to the master. Because of the

nonuniform distribution of objects and an often imposed requirement that the region

be partitioned using regular geometries (for example, we may require a rectangular

region be partitioned using either vertical or horizontal cut lines so that the pre- and

post-processing tasks are simplified), the number of objects in each partition may

vary widely. As a result, the amount of preprocessing work varies widely from task

to task, and so also does the amount of work assigned to individual slaves as well

as the postprocessing work (which may now also invlove worrying about partition

boundary effects).

Certain semiconductor testing operations also utilize the master-slave paradigm.

In the case of burn-in operations, chips are subject to thermal stress for an extended

period of time in order to bring out latent defects leading to infant mortality that

might otherwise surface in the operating environment. The thermal stressing is

accomplished by maintaining the oven at a constant temperature while powering

up the chip, The burn-in times for each chip are specified by the customer for

whom it is made and it is thus fixed apriori. After the initial burn-in operation

each chip cools off for a specified amount of time that depends on the length and

intensity of the initial burn-in period. After cooling, each chip is subject to a

final burn-in operation” (see [13] for a more detailed description of semiconductor

burn-in operations). In this application the burn-in oven corresponds to the master

processor, the two burn-in tasks correspond to pre- and post-processing and the

cooling period corresponds to the slave task. Since the burn-in operations are near

the end of the production process, scheduling is critical in determining on-time

delivery and output performance for the entire company.

Industrial applications of the master-slave paradigm include the case of consol-

THE. MASTER-SLAVE PARADIGM 361

idators that receive orders to manufacture quantities of various items. The actual

manufacturing is done by a collection of slave agencies. The consolidator needs

to assemble the raw material (from his/her inventory) needed for each task, load

the trucks that will deliver this material to the slave processors, and perform an

inspection before the consignment leaves. All of these are part of the task prepro-

cessing done by the master processor (i.e., the consolidator). The slave processors

need to wait for the arrival of the raw material, inspect the received goods, perform

the manufacture, load the goods on to the trucks for delivery, perform an inspec-

tion as the trucks are leaving. These activities together with the delay involved

in getting the trucks to their destination (i.e., the consolidator) represent the slave

work. When the finished goods arrive at the consolidator, they are inspected and

inventoried. This represents the postprocessing.

In certain maintenance/repair environments, the maintenance manager examines

the maintenance tasks to be performed and writes up a formal work order for each

and prepares the task for maintenance; the work orders are executed by different

maintenance crews that are dispatched following the receipt of the work order;

upon completion, the maintenance manager inspects the completed work and signs

an acceptance document.

It is easy to see that the examples cited earlier for single master systems general-

ize to multiple master systems. For example, we may have a computational resource

that is comprised of a large number of processors. This resource is shared by several

host computers whose function is to obtain the data and code for each job (say from

a disk) and to store the results on a disk or to print the results out. For each job,

the actual computation is done on a single processor of the shared computational

resource. Each job has a preprocessing task (gather the data and code needed), a

postprocessing task (output the results), and a slave task (computation). Assum-

ing that the total number of jobs is no more than the number of processors in the

shared computational resource, the problem of scheduling the jobs can be modeled

as a multiple master scheduling problem. In this application, it is required that for

each job, the pre- and post-processing tasks be done by the same master. This is

referred to as restricted multiple master scheduling.

If the consolidator esample is generalized to include several consolidators, then

362 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

the resulting scheduling problem may be modeled as a restricted multiple master

system. On the other hand if there is a single consolidator with multiple trucks

and each truck has its own crew for loading, inspecting, etc., then the scheduling

problem can be modeled as a multiple master system (each truck and crew define

one master) in which the master that preprocesses job i (i.e., the truck that delivers

the raw material for the job) need not be the same as the one that post-processes

job i (i.e., the truck that brings back the finished goods corresponding to this job).

While the problem of scheduling multiprocessor computer systems has received

considerable attention [3], [4], [lo], [12], [14], [15], [18], 1211, it appears that the

master-slave model has not been studied prior to the work of Sahni [19]. It is

interesting to note that the master-slave scheduling model may be regarded as a

variant of the job shop (see [l], [2] f or a definition of a job shop as well as for

elementary terminology concerning scheduling) as described below:

1. the job shop has two classes of machines: master and slave

2. there is exactly one master machine and the number of slave machines equals

the number of jobs

3. each job has three tasks to be done in order; the first and third on the master

and the second on a slave

The two machine flowshop model with transfer lags (2FTL) is a close relative to

the master-slave model. In this model the preprocessing task has to be processed by

the upstream machine, followed by a waiting period known as transfer lag, followed

by the postprocessing task at the downstream machine. Special cases of this model

are among the first problems considered in scheduling theory; see [8], [16], [20]. In

[7], the problem of finding minimum makespan schedules for 2FTL was shown to be

strongly NP-hard. Further results on 2FTL may be found in [5]. The problem of

scheduling single machines with time lags and two tasks per job is identical to the

single-master master-slave model. Since the former problem is strongly NP-hard

[9], the single master problem is also strongly NP-hard.

In [19], the problem of finding minimum makespan no-wait-in-process schedules

is shown to be NP-hard for the case of a single master. This remains true even when

the pre- and post-processing tasks are required to be done in the same order. When

THE MASTER-SLAVE PARADIGM 363

the order in which the post-processing tasks is done is required to be reverse of the

pre-processing order, the minimum makespan schedule can be found in O(nlogn)

time. Fast polynomial time algorithms to obtain minimum makespan schedules in

which the pre- and post-processing orders are the same (or reverse) and a job may

wait between the completion of one task and the start of the next are also developed

in [19].

For no-wait scheduling, the single-master master-slave model and the coupled-

task model of [17] are identical. Orman and Potts [17] show that many versions of

this latter problem are strongly NP-hard. These results carry over to the no-wait

master-slave model.

The outline of the rest of this paper is as follows. In Section 2 we define the

problems to be considered and present some basic results. In Section 3, we develop

fast approximate algorithms for problems on a single master processor. In Section 4,

we consider the problem of obtaining minimum finish time schedules for multiple

master systems. We conclude with future research directions in Section 5.

2 Notation and Basic Results

Figure 1 (a) shows a possible schedule for the case when n = 2, (al, bl, cl)= (2, 6,

l), and (~2, bz, cs) = (1,2, 3). In this schedule, the preprocessing of job 1 is handled

first by the master; all other tasks begin at the earliest possible time. M denotes

the master processor and 5’1 and 5’s denote the slaves. The finish time is 9. The

schedule that results when the master pre-processes job 2 first and all other tasks

begin at the earliest possible time is shown in Figure 1 (b). This has a finish time

of 10.

Let us examine the schedules of Figure 1. Notice that in both schedules, once

the processing of a job begins, the job is processed continuously until completion.

Schedules with this property are said to have no-trait-in-process. In industrial ap-

plications, one may impose this requirement on a schedule. Another interesting

feature of the schedules of Figure 1 is that in one the postprocessing is done in the

reverse order of the preprocessing while in the other the pre- and post-processing

orders are the same. In some settings, we may require that schedules satisfy one

364 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

M

Sl

s2

23 5 8 9 01 3 6 9 10

M

Sl

s2

(a> o>>

Figure 1: Example schedules

order or the other. For example, this could simplify the postprocessing if a stack is

used, by the master, to maintain a record of jobs in process. Similarly, if the master

uses a queue to maintain this information, we might require that the postprocessing

be done in the same relative order as the preprocessing. Another discipline that

might be imposed on the master is to complete all the preprocessing tasks before

beginning the first postprocessing task. Both of the schedules of Figure 1 obey this

discipline.

Similar requirements may be imposed in our consolidator example. This time

suppose that all the raw material is loaded on a single truck and that the slaves are

uniformly spaced. Whenever the truck stops, it has to wait at the slave location

while the material for that location is unloaded and checked. This constitutes the

preprocessing. When the truck returns to pick up the finished goods, it must again

wait to load and check. This constitutes the postprocessing. If the truck route is

circular, then the pre- and post-processing orders are the same. If the route is linear,

then the postprocessing is done when the truck is returning to its point of origin

and so is done in the reverse order of preprocessing. In both cases, all preprocessing

tasks are done before the first postprocessing task.

For the case of a single master processor, Sahni [19] has considered order preserv-

ing sequencing (OPS(1)) an reverse order sequencing (ROS(l)). In the former d

case the pre- and post-processing tasks must be processed in the same order while

in the latter these orders should be in reverse order. Optimal algorithms with com-

plexity U(nlogn) have been developed for both of these cases. To facilitate later

developments we provide a description of these algorithms denoted by OOPS(l)

and OROS(1) respectively.

THE MASTER-SLAVE PARADIGM

OOPS(1)

365

Step 1. Jobs with cj > aj come first in nondecreasing order of aj + bj

Step 2. Jobs with cj = aj come next in any order

Step 3. Jobs with cj < aj come last in nonincreasing order of bj + cj

Step 4. Generate the order preserving schedule whose preprocessing tasks are ordered

according to steps l-3

OROS(l)

Step 1. Order the jobs according to nonincreasing order of bj

Step 2. Generate the reverse order schedule whose preprocessing tasks are ordered

according to step 1

The single master problem to minimize makespan with no restriction on the

relative ordering of tasks of different jobs has not been considered before. We

refer to this problem as unconstrained minimum finish time or UMFT. In light of

the strong NP-completeness of the UMFT problem, we develop an approximation

algorithm in Section 3.

For master-slave systems with multiple master processors we can distinguish two

classes of problems. In the first class we require both pre- and post-processing tasks

to be processed by the same processor; we shall refer to such systems as restricted

multiple master systems. In the second class we allow the pre- and post-processing

task of each job to be processed by different processors; we shall refer to such systems

as unrestricted multiple master systems. For instance, both modes of operation are

applicable in semiconductor testing in the presence of multiple burn-in ovens.

For unrestricted multiple master systems we need to be careful about the defini-

tion of order-preserving and reverse-order schedules as the pre- and post-processing

tasks of a job may be done by different master processors.

Definition 1 For multiple master processor systems we shall say that a schedule

is order preserving iff for every pair of jobs i and j such that the preprocessing of

i begins before the preprocessing of j, the postprocessing of i completes before or at

the same time as the postprocessing of j.

366 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

Definition 2 For multiple master processor systems we shall say that a schedule is

a reverse order schedule i# for every pair of jobs i and j such that the preprocessing

of i begins before the preprocessing of j, the postprocessing of i completes after or at

the same time as the postprocessing of j.

In Section 4 we will develop unconstrained, order preserving and reverse order

schedules ior both restricted and unrestricted multiple master systems.

3 Approximation Algorithms for Unconstrained

MFT

In light of the complexity status of UMFT we are motivated to investigate heuristic

algorithms that have good worst case performance. If S is an unconstrained sched-

ule, then a straightforward interchange argument shows that we may rearrange the

master tasks so that all preprocessing tasks complete before any postprocessing task

starts. Such a rearrangement can be done without increasing the makespan of the

schedule. Further, the rearranged schedule has no preemptions. We may shift the

a tasks in the rearranged schedule left so as to start at time 0 and complete at time

C a; and the b tasks may be shifted left so as to begin as soon as their corresponding

a tasks complete. The c tasks may be ordered to begin in the same order as the

b tasks complete. None of these rearrangement operations affects the makespan of

5’. With this as motivation, we define a canonical schedule to be one which satisfies

the following properties:

1. There are no preemptions.

2. The a tasks begin on the master at time 0 and complete at time Ca;.

3. The b tasks begin as soon as their corresponding a tasks complete.

4. The c tasks are done in the same order as the b tasks complete and as soon as

possible.

It is evident that for every unconstrained schedule S, there is a corresponding

canonical schedule with better or the same makespan. So, in the remainder of this

section we limit ourselves to canonical schedules. Note that a canonical schedule is

THFi MASTER-SLAVE PARADIGM 367

completely specified by giving the relative order in which the preprocessing tasks

are done. As a result, such a schedule is defined by a permutation that gives the

relative order in which the preprocessing tasks are done. We will use the terminology

i follows (precedes) j to mean i comes after (before) j in the permutation that defines

the schedule.

The next theorem finds the worst case performance of an arbitrary canonical

schedule S. Let Cs be the makespan of the canonical schedule S and C* the

optimal makespan of UMFT.

Theorem 1 For any canonical schedule S, g < 2 and the bound is tight.

Proof: If Cs = C;(a; + ci) then S is optimal and the error bound of 2 is valid.

Else, Cs > C;(oi + ci) in which case there exists idle time on the master processor.

Since S is canonical, this idle time will have to precede one or more postprocessing

tasks. Let ci,, be the last postprocessing task in S that starts immediately after

its corresponding slave task bi,. Since there is idle time on the master, such an io

exists. Then,

cs= c a;t(a;,-t-bi,tc;,)t c Ci < 2C*
i precedes io i follows io

since a;, $ bi, + ciO 5 C* and Ci(ai + c;) 5 C*.

To see that the error bound is tight consider an instance with k + 1 jobs where k

is an arbitrary positive integer. The first k jobs have processing requirements (1, E, c)

while the (k + l)-st job has requirements (E, k, c), E < l/k. The schedule S that pro-

cesses ak+r = 6 last among all preprocessing tasks has makespan Cs = 2k + 2~. The

schedule S* that processes a&r first among all preprocessing tasks has makespan

C*=kt(kt2) c and hence g -+ 2 as e -+ 0. o

In what follows we present a heuristic whose error bound is 9.

Heuristic H

Step 1. Let Sr = { i : ai 5 ci} and Sz = {i : ai > ci}.

Step 2. Reorder the jobs in Sr according to nondecreasing order of bi

368 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

Step 3. Reorder the jobs in Sa according to nonincreasing order of bi

Step 4. Generate the canonical schedule in which the a tasks of Sr precede those of Sa

The complexity of heuristic H is readily seen to be O(nlogn). Let CH be the

makespan of the schedule generated by the above heuristic. Then,

Theorem 2 g 2 4 and the bound is tight.

Proof: Let S* be an optimal schedule for UMFT with makespan C*. Based on the

processing requirements (a;, bi, c;) of job i, we define an auxiliary problem P’ with

processing requirements (a:, b:, c:) defined as follows:

1

0 if ai 5 Ci;

{

0
a: = , b:=bi, c+

if Ci < a;;

ai otherwise Ci otherwise

Note that P’ isn’t a legal instance of UMFT as it contains tasks whose processing

requirement is zero. However, this doesn’t affect the validity of our proof.

In P’, all preprocessing tasks in Sr are zero and hence they can precede all

non-zero preprocessing tasks (i.e. the preprocessing tasks of 52). Similarly, all post-

processing tasks in Sz are zero and hence they can follow all non-zero postprocessing

tasks (i.e. the postprocessing tasks of Sr). Also, in P’ every job has either ai = 0

or c: = 0.

A straightforward interchange argument shows that there exists an optimal

schedule for P’ where all postprocessing tasks for which a{ = 0 are ordered in

nondecreasing order of bi. Similarly, all preprocessing tasks with c: = 0 are ordered

in nonincreasing order of bi. Therefore, an optimal sequence S’ for P’ looks like:

S’ a; : i E s2 Ci : i E s*

0 C’

Figure 2: An optimal sequence for P’

Note that S’ is the schedule generated by Step 4 of H if applied on P’. Let

C’ be the makespan of S’. By optimality of S’ we have that C’ 5 C”. From the

schedule S’ for P’ we generate a schedule S * for the original problem (where the

processing requirements are (ai, bi,ci)) by appending the tasks a;; i E Sr in the

THE MASTER-SLAVE PARADIGM 369

beginning of S’ and the tasks c;; i E .S’z at the end of S’. Note that the resulting

schedule SH is feasible for the original data because S’ is feasible for the modified

data and b’ = b;. It is easy to check that SH is the schedule generated by H for the

input data (ei, bi, c;) i = 1,2, . . . , TZ.

Let CH be the makespan of SH. Then, by construction

cH=~‘+Cu;+C~i<C*+~,~(~i+Ci)+~,~(aif’i)=

iC% iE& 6% 6%!

= C* + i z(Ui + Ci) < iC*

t

since Ci(Ui + Ci) 5 C*.

To see that the bound of 4 is tight consider an instance that consists of k + 1

jobs where k is an arbitrary positive integer. The first k jobs have processing

requirements (l,~, 1) while the (k + 1)-st job has requirements (~,2k,e). For this

instance we have Sz = 0 and H produces the canonical schedule of Figure 3 a). In

this the preprocessing tasks of jobs 1 through k are done first, in any order, and

then that of job k + 1 is done. The makespan is 3k + 26.

0 k+c 2kf2c

Figure 3: The bound of f is tight

An optimal solution with makespan 2k + 26 is depicted in Figure 3 b) and hence

CH 3kt2s 3
c*= -+-

2k+2c 2

as E * 0. This completes the proof of the theorem. CI

4 Multiple Master Systems

A versatile heuristic, general, that obtains multimaster schedules with an error

bound of at most 2 is developed in Section 4.1. For the case of reversed order

370 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

sequencing a heuristic with worst case error bound 2 - $ (m is the number of

master processors) is presented in Section 4.2.

4.1 A General Heuristic

The heuristic general may be used for both restricted and unrestricted systems as

well as when constraints are placed between the orders in which the pre- and post-

processing tasks are executed. Before presenting this heuristic, we define the first

available machine (FAM) rule. In this, jobs are assigned to master processors one-

at-a-time. Each job has a time t; associated with it and the jobs are considered in

a given order 0. When a job is considered, it is assigned to the master on which the

sum of the times of already assigned jobs is the least (ties are broken arbitrarily).

Heuristic general(m)

Step 1. For each job, let ti = a; + ci. Sort the jobs so that tl 2 tz 2 . . . 2 t,.

Step 2. Consider the jobs in this order and use the FAM rule to assign jobs to masters.

Step 3. On each master, schedule the preprocessing tasks in any order from time 0 to

time T where T is the sum of the preprocessing tasks of the jobs assigned to this

master. The slave tasks are scheduled to begin as soon as their corresponding

preprocessing tasks are complete. The postprocessing tasks are scheduled to

begin as soon after the completion of their slave tasks as is feasible.

The heuristic general(m) constructs schedules with the property that each job’s

pre- and post-processing tasks are done by the same master. Hence the schedules

are feasible for both the restricted and unrestricted master models. The complexity

of the heuristic is readily seen to be O(nlog n).

J&t (y--al be the makespan of the schedule generated by heuristic general. Let

GJMFT~~~C~MFT~ respectively, be the makespans of the optimal unrestricted and

restricted master system schedules.

Theorem 3 Cgeneral/C~i,wFT 5 2 and Cgenera’/C&FT 5 2.

Proof: Since CGfiIFT 5 C21\l,T, it is sufficient to show that Cgenera’/C;MFT 5 2.

Assume that on the k’th master the last postprocessing task completes at time

Cgenera’. If there is no idle time on this master, then from step 2 it follows that

THE MASTER-SLAVE PARADIGM 371

cg enera’ 5 i fJ(Ui + Ci) t (U[+ Cl) 5 i $(Ui t Ci) + G(Ul t Cl)

t=l r=l

where 1 is the last job assigned to master k by the FAM rule. Since, CGMFT 2

A Cy=l(ui + c;) and CGMFT 2 al + CI, we get

penera’ < C&q + m-l
- 1 --C~~J~T=(~-$)GMFT

m

Cgener=‘/C&FT 5 2 - -L m

If the k’th master has idle time, then from step 3 it follows that there is a job q

scheduled on this master such that the master is busy from time 0 to the start of b,

and again from the finish of b, to time C general. Let Q be the set of jobs assigned

to this master in step 2.

Cgenera' L C(i u 4 c i) t bq = C(ui t Ci) - (~9 + Cq) + (up t bq t Cq)
&Q iEQ

From step 2, it follows that CieQ(ei+ci) 5 5 ~~z'=l(~~+c;)f~(~~+~~) where

I is the last job assigned to the master in step 2. Because of the ordering of step 1,

al + CL < a, + I+. Hence,

Each term on the right hand side of the above inequaiity is easily seen to be no

more than CcMFT. Hence, Cgenerai < 2C;MFT. -

Combining the bounds for the two cases, we get CgeneralfCt&lFT 5 2. •i

To see that the bound of 2 is a tight one, consider the n(m- 1)+2 job instance in

which the first job’s pre-, slave, and post-processing tasks are given by (n-c, E, c/2),

the next n(m - 1) job task times are (l/2, E, l/2) and the last job has times (6, n, E).

Here, 0 < E < l/2. The jobs have been given in the order produced in step 1.

The heuristic assigns jobs 1 and n(m - 1) + 2 to master 1. The remaining jobs are

distributed evenly across the remaining masters. If in step 3, the first master is

scheduled to process al first, then Cgenera’ = 2n + E. However, C{;,,,,,, = C&r,,

= n + 2.5~. The ratio approaches 2 as E -+ 0.

372 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

Heuristic general may be used to obtain order preserving and reverse order

schedules by modifying step 3 to produce such schedules. In fact, since optimal

single master order preserving and reverse order schedules can be obtained in poly-

nomial time ([19]), step 3 can generate optimal schedules using the jobs assigned

to each master. Since the proof of Theorem 3 does not rely on how the schedule

is constructed in step 3, the error bound of 2 applies even for the case of order

preserving and reverse order schedules.

4.2 Restricted Reverse Order Schedules

In this subsection we develop an approximation algorithm for restricted multiple

master systems in which each master processor is required to process its postpro-

cessing tasks in an order that is the reverse of the order in which it processes

its preprocessing tasks. This problem is abbreviated as ROS(m) (reverse order

scheduling with m masters). The OROS(l) algorithm provided in Section 2 solves

optimally the ROS(l) problem.

The approximation algorithm, Heuristic ROS(m), given below obtains schedules

with an error bound no more than 2 - l/m.

Heuristic ROS(m)

Step 1. Sort the jobs so that bl 2 b2 > . . . > b,.

Step 2. Consider the jobs in this order and use the FAM rule to assign jobs to masters

using ti = ai + Cie

Step 3. On each master, schedule the preprocessing tasks in the order the jobs were

assigned to the master. Schedule the postprocessing tasks in the reverse order

and to begin as soon as possible after all preprocessing tasks complete.

Note that in step 1, we obtain the ordering needed to construct an OROS(l)

for the n jobs and that in step 3 the jobs assigned to each master are scheduled to

form an OROS(1) for that master. The complexity of ROS(m) is easily seen to

be O(nlogn). To establish the error bound, we need to first establish two other

results. This is done in Lemmata 1 and 2. The error bound itself is established in

Theorem 4.

THE MASTER-SLAVE PARADIGM 373

Let I, I’, and I” be three sets of jobs. I = {(oi,b;,ci)ll 5 i 2 n}, 1’ has n jobs

defined by u: = C: = (oi + q)/2 and b: = bi, and I” has n jobs defined by a: = cy

= (ei + ci)/(2m) and 6: = b;. Let C;(m), C;,(m), and C&(m), respectively, denote

the makespans of the OROS(m) for I, I’, and I”.

Lemma 1 C;(m) = C;,(m) for all m.

Proof: Let the optimal schedules for I and I’ be S;(m) and S;,(m), respectively. In

S;(m), consider a job b with ok # ck. Let p be the master processor on which job Ic

is scheduled in S;(m). If Uk < ck, then increase the time for which the preprocessing

of k is scheduled to a/k = (ak+ck)/2 and reduce the time for which its postprocessing

is scheduled to ci = (ak + ck)/2. This will require us to shift right by uk - ek all

tasks of jobs whose preprocessing is scheduled after the preprocessing of job k on

master p and also the slave and postprocessing tasks of job k. This transformation

does not increase the schedule length. A similar transformation can be made when

ak > Ck. By applying this transformation to all jobs with ei # ci, we transform

S;(m) into a feasible reverse order m master schedule for I’ without increasing the

schedule length. So, C;,(m) 2 C;(m).

Using a reverse transformation, we can transform S;,(m) into a feasible reverse

order schedule for I without increasing the schedule length. So, C;(m) 5 C;,(m).

Hence, C;(m) = C;,(m). u

Lemma 2 C&(l) 5 C;(m) for all m.

Proof: From Lemma 1, it follows that it is sufficient to show that C;,,(l) 5 C;,(m).

In S;,(m), we may assume that the preprocessing tasks on each master are scheduled

continuously (i.e., with no idle time) from time zero to the time the last preprocess-

ing task on that master completes (this may require us to shift some preprocessing

tasks to the left). Also, we may assume that the postprocessing tasks are scheduled

continuously from the start of the first postprocessing task on the master to time

C;,(m) (this may require us to shift some postprocessing tasks to the right). Let 15;:

and Bi, respectively, denote the finish time of a: and the start time of c: in S;,(m).

Since o: = C: = +(a; + ci), it follows that Fi = C;,(m) - Bi for all i. Assume that

the jobs are numbered SO that Fi 5 F;+, , 1 < i < n. Hence, B; 2 Bi+r , 1 5 i < n.

374 SARTAJ SAHNI AND GEORGE VAIRAKTARAKIS

Since Fi 5 Fi::+l, 1 5 i < n, mlG;: 2 Cj,, CA: or Fj 2 (& ai)/m. SO, C;,(m) -

Bi 2 (Cj,, aj)/m = (Cj,, c[i)/m. Since, C;,(m) 1 4 + b: + (C;,(m) - B;) 2

(~&,(a~ + c$))/m + b:, for all i, we get

Now, consider the reverse order schedule S,/(l) obtained by scheduling the pre-

processing tasks of I” in the order 1,2, . . ., n. In this schedule, we may assume that

the preprocessing tasks are scheduled continuously and the slave and postprocess-

ing tasks are scheduled as early as is feasible. Let Cl,,(l) be its makespan. Clearly,

C;,,(l) 5 C&l). If there is no idle time on the master, then C’III = cjn=r(a$’ $ CT)

= (I$l(a5 + c:))/m < Ejn=l(uj + c;)/m + b: I m~i{(&(a$ t ci))/m + 61)

I C;,(m).

If there is idle time on the master, then there is a Ic such that C’II~ = &r(ay+

cy) + bl = (J’&(ai + cq))/m + bk 5 max;{(~&,(a~ t ci))/m t b:} < C;,(m).

So, C;,,(l) 5 C,))(l) 5 C;,(m) = C;(m). Cl

Effectively, Lemmata 1 and 2 show that the makespan of the schedule produced

by OROS(l) on I” is a lower bound on the optimal makespan value for ROS(m)

which is denoted by C;(m). The following theorem makes use of this result.

Theorem 4 Let Cpos (m) be the makespan of the schedule generated by ROS(m)

on instance I. C~os(m)/C;(m) < 2 - l/m and this bound is tight.

Proof: Assume that the jobs are numbered so that bi 2 b;+l, 1 5 i < n. Using

the transformations of Lemma 1, we can transform SfO”(m) into a schedule for I’

that has the same makespan. Let this schedule be .9,1(m). In this schedule, we may

assume that the preprocessing tasks on each master are scheduled continuously from

time zero to the time the last preprocessing task on that master completes and that

the postprocessing tasks are scheduled continuously from the start of the first post-

processing task on the master to time @OS(m). Let F; and Bi, respectively, denote

the finish time of u: and the start time of c: in SFoS(m). From the application of

the FAM rule in step 2 of ROS(m), it follows that

THE MASTER-SLAVE PARADIGM

and

375

If there is no idle time on at least one of the masters, then let Q be the set of jobs

processed by any master, say k, with no idle time. If 1 is the last job preprocessed on

the k-th master, it follows that Cfos (m) = &Q(a: + c:) 5 5 c;zl u; + *a;+

&&c; + +c; = ic;&zj + c;) + *(u; f c;> 5 c;,(m) + *C;,(m) =

c;(m) + y+;(m).

If all masters have idle time, then CpO”(m) = maxi{J’i + b: •l- Coos - Bi}

5 max;{&&(a> + cj) $ *(a: + c:) + 6:). Now consider the instance I”. In

OROS(I), the preprocessing tasks of I” are scheduled in the order 1, 2, . = a, 7t

because bi 2 bi+l. AS a result, C;,,(l) 2 maxi{? C&r($ + c>) + bi}. From

Lemma 2, we know that C;(m) 2 C;,,(l). So, CFos(m) 5 masr;{$C&(a~+c~)+

v(u: t c;) t b:} I C;,,(m) t eC;,,(m) 5 C;(m) t *C;(m).

Hence, C~os(m)/C~(m) 5 2 - l/m.

To see that this error bound is tight, consider the m master instance I with

n = m(m - 1) + 1 jobs. The first m(m - 1) of these jobs have (a;, bi,c;) = (1, E, E),

where E is a small number. The last job has (an,bn,cn) = (m,c/2,c). The job

numbering corresponds to that produced in step 1 of ROS(m). In step 2, each

master is assigned m - 1 of the first m(m - 1) jobs and one of them gets job n in

addition. The optimal schedule for this master has makespan 2m - 1 + c/2 + mc.

The OROS() h d 1 m SC e u e assigns job n alone to one of the m masters and distributes

the remaining jobs equally among the remaining m - 1 masters. So, C;(m) =

m + (m f 1)~. So, Cfos(m)/C;(m) = (2m - 1 + c/2 f me)/(m + (m f 1)~) which

tends to 2 - l/m (from below) as E -+ 0. q

Note that the above result has some similarities with the problem of minimiz-

ing makespan in a two-stage hybrid flowshop considered by Lee and Vairaktarakis

[ll]. In this problem preprocessing tasks are executed on the machines of stage 1,

postprocessing tasks are executed on the machines of stage 2, and the slave tasks

are null. A heuristic with bound 2 - i was developed for that problem as well.

376

5 Conclusion

SARTAJ SAHNl AND GEORGE VAIRAKTARAKIS

In this paper we introduced various applications of the master-slave paradigm. We

proposed fast bounded performance approximation algorithms to schedule both sin-

gle master and multiple master systems. Our future research direction will be to-

wards new variations of the master-slave model that are of practical relevance.

References

[l] K. Baker, Introduction to Sequencing and Scheduling, John Wiley, New York,

1974.

[2] E. Coffman, Computer & Job/Shop Scheduling Theory, John Wiley, New York,

1976.

[3] G. Chen and T. Lai, Preemptive scheduling of independent jobs on a hypercube,

Information Processing Letters, 28, 201-206, 1988.

[4] G. Chen and T. Lai, Scheduling independent jobs on partitionable hypercubes,

Jr. of Parallel & Distributed Computing, 12, 74-78, 1991.

[5] M. Dell’Amico, Shop problems with two machine and time lags, Operation

Research, to appear.

[6] M. Garey and D. Johnson, Computers and Intractability: A guide to the theory

of NP-completeness, W. H. Freeman and Co., New York, 1979.

[7] R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan, Optimization and

approximation in deterministic sequencing and scheduling: A survey, Annals

of Discrete Mathematics, 5, 287-326, 1979.

[S] S.M. Johnson, Discussion: Sequencing n jobs on two machines with arbitrary

time lags, Manage,ment Science, 5, 299-303, 1959.

[9] W. Kern and W. Nawijn, Scheduling multi-operation jobs with time lags on a

single machine, University of Twente, 1993.

[lo] P. Krueger, T. Lai, and V. Dixit-Radiya, Job scheduling is more important

than processor allocation for hypercube computers, IEEE Trans. on Parallel

& Distributed Systems, 5, 5, 488-497, 1994.

THE MASTER-SLAVE PARADIGM 377

Ill] C.-Y. Lee and G.L. Vairaktarakis, Minimizing makespan in hybrid flowshops,

Operations Research Letters, 16, 149-158, 1994.

[12] S. Leutenegger and M. Vernon, The performance of multiprogrammed muiti-

processor scheduling policies, Proc. 1990 ACM SIGMETRICS Conference on

Measurement d Modeling of Computer Systems, 226-236, 1990.

[13] C.-Y. Lee, R. Uzsoy and L.A.M. Vega, Efficient algorithms for scheduling semi-

conductor burn-in operations, Operations Research, 40, 4, 764-775, 1992.

[14] S. Majumdar, D. Eager, and R. Bunt, Scheduling in multiprogrammed parahei

systems, Proc. 1988 .4CM SIGMETRICS, 104-113, 1988.

[15] C. McCreary, A. Khan, J. Thompson, and M. McArdle, A comparison of heuris-

tics for scheduling DAGS on multiprocessors, 8th International Parallel Pro-

cessing Symposium, 446-451, 1994.

]16] L.G. Mitten, Sequencing n jobs on two machines with arbitrary time lags,

Management Science, 5, 293-298, 1959.

[17] A. Orman and C. Potts On the complexity of coupled-task scheduling, Discrete

Applied Mathematics, To appear.

[18] S. Sahni, Scheduling multipipeline and multiprocessor computers, IEEE Trans

on Computers, C-33, 7, 637-645, 1984.

[19] S. Sahni, Scheduling master-slave multiprocessor systems, Proceedings, First

International EURO-PAR Conference, Lecture Notes In Computer Science,

Vol. 966, Springer, 1995, pp 611-622.

[20] W. Szwarc, On some sequencing problems, Naval Research Logistics Quarterly,

15, 127-155, 1968.

[21] Y. Zhu and M. Ahuja, Preemptive job scheduling on a hypercube, Proc. 1990

International Conference on Parallel Processing, 301-304, 1990.

