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Abstract 

The master-slave paradigm finds important applications in parallel computer 

scheduling, semiconductor testing, machine scheduling, transportation, maintenance 

management and other industrial settings. In the master-slave model considered in 

this paper a set of jobs is to be processed by a system of processors. Each job 

consists of a preprocessing task, a slave task and a postprocessing task that must 

be executed in this order. The pre- and post-processing tasks are to be processed 

by a master processor while the slave task is processed by a slave processor. In 

this paper, we motivate the master-slave model and develop bounded performance 

approximation algorithms for the unconstrained makespan minimization problem 

as well as for multiple master systems. 
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1 Introduction 

The master-slave paradigm involves two sets of processors. The master processors 

that are responsible for pre- and post-processing of work orders, and the slave 

processors that are responsible for the actual execution of the orders. The number 

of slave processors is no less than the number of work orders. Applications of 

this paradigm include parallel computing, semiconductor testing and problems in 

transportation as will be described shortly. 

First we give a brief description of the model under consideration. A set of jobs 

is to be processed by a system of master and slave processors. Each job has three 

tasks associated with it. The first is a preprocessing task, the second is a slave task, 

and the third a postprocessing task. The tasks of each job are to be performed 

in the order: preprocessing, slave, postprocessing. Let a;, bi, and ci, respectively, 

denote the preprocessing, slave, and postprocessing tasks (and task times) of job 

i. All task times are assumed to be greater than zero (i.e., ai > 0, bi > 0, and 

ci > 0, for all i). The available processors are divided into two categories: master 

and slave. If n denotes the number of jobs, then no schedule can use more than 

rr slaves. Hence we may assume that there are exactly 7~ slaves. The makespan or 

finish time of a schedule is the earliest time at which ah tasks have been completed. 

The case where there is a single master processor has been considered in [19]. In this 

paper we consider the problem of minimizing makespan in a system that consists 

of several master processors; we shah refer to this generalization as multiple master 

systems. 

Several applications of the master-slave model are found in parallel computer 

scheduling. A common parallel programming paradigm involves the use of a single 

main computational thread that employs the fork and join operations to spawn 

parallel tasks/threads and then to synchronize following the completion of these 

tasks. The fork operation involves the passing of varying amounts of data to remote 

processors that will execute the spawned threads (we assume that each spawned 

thread will be executed on a different processor). These processors will, in turn, 

return the results to the main thread. So, associated which each of the spawned 

threads, we have three amounts of work: 
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1. Preprocessing by main thread. This is the work needed to initiate the thread. 

It includes the effort expended in collecting the data needed by the remote 

processor (in case of a distributed memory environment); overheads involved 

in transmitting this data to the remote processor, etc. 

2. Work done in the thread. This includes the computational activity assigned to 

the remote processor, the work this processor must do to receive the data and 

send back the results, and the transmission times in receiving and sending. 

3. Post-processing by the main thread. This represents the effort expended in 

receiving the answers and performing any postprocessing on them. 

Since the different threads may execute very different pieces of code, the relative 

values of the amounts of work involved in preprocessing, in thread execution, and 

in postprocessing can vary widely from thread to thread. 

The fork-join paradigm can be used to model, for example, one of the modes of 

operation of the nCube hypercube computer. In this, the main program thread runs 

on the host computer which serves as the master processor. This program initiates 

parallel tasks on the hypercube processors when the host computation reaches a 

point where parallelism can be exploited. For each parallel task, the host needs to 

gather the data needed by the task and also consume the results from the tasks when 

they are complete. These correspond to pre- and post-processing activities. The 

tasks themselves run on the hypercube processors and correspond to slave activities. 

The number of parallel tasks created is generally equal to the number of available 

hypercube processors. 

For example, if the master processor reaches a point in its computation when 

two matrices A and B are to be multiplied, then it would partition the matrix 

multiplication problem into p (p is the number of slave processors) multiplication 

problems each involving a submatrix of A and B. These submatrix pairs together 

with the multilpication code would be transmitted to the p slaves (one pair per 

slave); the slaves would execute the code once they have received the data and 

code; the slaves would transmit the product submatrix back to the master; and 

finally the master would store the received submatrix of C into the proper locations 

in C. Since matrix multiplication is a highly structured problem, it is possible to 

partition the matrices so that the amount of preprocessing work for each slave task is 
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the same, the amount of postprocessing work is the same for each task, the amount 

of work done by each slave is the same (this assumes uniform data transmission 

times between the master and slaves). When the submatrices are square, the task 

preprocessing time is roughly twice the postprocessing time. 

As another parallel computing example, suppose we are working with a computer 

vision or VLSI CAD problem that involves objects in a two-dimensional region. 

To process these objects, the region may be divided into p parts; each part is 

sent to a slave processor; the results are returned to the master. Because of the 

nonuniform distribution of objects and an often imposed requirement that the region 

be partitioned using regular geometries (for example, we may require a rectangular 

region be partitioned using either vertical or horizontal cut lines so that the pre- and 

post-processing tasks are simplified), the number of objects in each partition may 

vary widely. As a result, the amount of preprocessing work varies widely from task 

to task, and so also does the amount of work assigned to individual slaves as well 

as the postprocessing work (which may now also invlove worrying about partition 

boundary effects). 

Certain semiconductor testing operations also utilize the master-slave paradigm. 

In the case of burn-in operations, chips are subject to thermal stress for an extended 

period of time in order to bring out latent defects leading to infant mortality that 

might otherwise surface in the operating environment. The thermal stressing is 

accomplished by maintaining the oven at a constant temperature while powering 

up the chip, The burn-in times for each chip are specified by the customer for 

whom it is made and it is thus fixed apriori. After the initial burn-in operation 

each chip cools off for a specified amount of time that depends on the length and 

intensity of the initial burn-in period. After cooling, each chip is subject to a 

final burn-in operation” (see [13] for a more detailed description of semiconductor 

burn-in operations). In this application the burn-in oven corresponds to the master 

processor, the two burn-in tasks correspond to pre- and post-processing and the 

cooling period corresponds to the slave task. Since the burn-in operations are near 

the end of the production process, scheduling is critical in determining on-time 

delivery and output performance for the entire company. 

Industrial applications of the master-slave paradigm include the case of consol- 
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idators that receive orders to manufacture quantities of various items. The actual 

manufacturing is done by a collection of slave agencies. The consolidator needs 

to assemble the raw material (from his/her inventory) needed for each task, load 

the trucks that will deliver this material to the slave processors, and perform an 

inspection before the consignment leaves. All of these are part of the task prepro- 

cessing done by the master processor (i.e., the consolidator). The slave processors 

need to wait for the arrival of the raw material, inspect the received goods, perform 

the manufacture, load the goods on to the trucks for delivery, perform an inspec- 

tion as the trucks are leaving. These activities together with the delay involved 

in getting the trucks to their destination (i.e., the consolidator) represent the slave 

work. When the finished goods arrive at the consolidator, they are inspected and 

inventoried. This represents the postprocessing. 

In certain maintenance/repair environments, the maintenance manager examines 

the maintenance tasks to be performed and writes up a formal work order for each 

and prepares the task for maintenance; the work orders are executed by different 

maintenance crews that are dispatched following the receipt of the work order; 

upon completion, the maintenance manager inspects the completed work and signs 

an acceptance document. 

It is easy to see that the examples cited earlier for single master systems general- 

ize to multiple master systems. For example, we may have a computational resource 

that is comprised of a large number of processors. This resource is shared by several 

host computers whose function is to obtain the data and code for each job (say from 

a disk) and to store the results on a disk or to print the results out. For each job, 

the actual computation is done on a single processor of the shared computational 

resource. Each job has a preprocessing task (gather the data and code needed), a 

postprocessing task (output the results), and a slave task (computation). Assum- 

ing that the total number of jobs is no more than the number of processors in the 

shared computational resource, the problem of scheduling the jobs can be modeled 

as a multiple master scheduling problem. In this application, it is required that for 

each job, the pre- and post-processing tasks be done by the same master. This is 

referred to as restricted multiple master scheduling. 

If the consolidator esample is generalized to include several consolidators, then 
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the resulting scheduling problem may be modeled as a restricted multiple master 

system. On the other hand if there is a single consolidator with multiple trucks 

and each truck has its own crew for loading, inspecting, etc., then the scheduling 

problem can be modeled as a multiple master system (each truck and crew define 

one master) in which the master that preprocesses job i (i.e., the truck that delivers 

the raw material for the job) need not be the same as the one that post-processes 

job i (i.e., the truck that brings back the finished goods corresponding to this job). 

While the problem of scheduling multiprocessor computer systems has received 

considerable attention [3], [4], [lo], [12], [14], [15], [18], 1211, it appears that the 

master-slave model has not been studied prior to the work of Sahni [19]. It is 

interesting to note that the master-slave scheduling model may be regarded as a 

variant of the job shop (see [l], [2] f or a definition of a job shop as well as for 

elementary terminology concerning scheduling) as described below: 

1. the job shop has two classes of machines: master and slave 

2. there is exactly one master machine and the number of slave machines equals 

the number of jobs 

3. each job has three tasks to be done in order; the first and third on the master 

and the second on a slave 

The two machine flowshop model with transfer lags (2FTL) is a close relative to 

the master-slave model. In this model the preprocessing task has to be processed by 

the upstream machine, followed by a waiting period known as transfer lag, followed 

by the postprocessing task at the downstream machine. Special cases of this model 

are among the first problems considered in scheduling theory; see [8], [16], [20]. In 

[7], the problem of finding minimum makespan schedules for 2FTL was shown to be 

strongly NP-hard. Further results on 2FTL may be found in [5]. The problem of 

scheduling single machines with time lags and two tasks per job is identical to the 

single-master master-slave model. Since the former problem is strongly NP-hard 

[9], the single master problem is also strongly NP-hard. 

In [19], the problem of finding minimum makespan no-wait-in-process schedules 

is shown to be NP-hard for the case of a single master. This remains true even when 

the pre- and post-processing tasks are required to be done in the same order. When 
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the order in which the post-processing tasks is done is required to be reverse of the 

pre-processing order, the minimum makespan schedule can be found in O(nlogn) 

time. Fast polynomial time algorithms to obtain minimum makespan schedules in 

which the pre- and post-processing orders are the same (or reverse) and a job may 

wait between the completion of one task and the start of the next are also developed 

in [19]. 

For no-wait scheduling, the single-master master-slave model and the coupled- 

task model of [17] are identical. Orman and Potts [17] show that many versions of 

this latter problem are strongly NP-hard. These results carry over to the no-wait 

master-slave model. 

The outline of the rest of this paper is as follows. In Section 2 we define the 

problems to be considered and present some basic results. In Section 3, we develop 

fast approximate algorithms for problems on a single master processor. In Section 4, 

we consider the problem of obtaining minimum finish time schedules for multiple 

master systems. We conclude with future research directions in Section 5. 

2 Notation and Basic Results 

Figure 1 (a) shows a possible schedule for the case when n = 2, (al, bl, cl)= (2, 6, 

l), and (~2, bz, cs) = (1,2, 3). In this schedule, the preprocessing of job 1 is handled 

first by the master; all other tasks begin at the earliest possible time. M denotes 

the master processor and 5’1 and 5’s denote the slaves. The finish time is 9. The 

schedule that results when the master pre-processes job 2 first and all other tasks 

begin at the earliest possible time is shown in Figure 1 (b). This has a finish time 

of 10. 

Let us examine the schedules of Figure 1. Notice that in both schedules, once 

the processing of a job begins, the job is processed continuously until completion. 

Schedules with this property are said to have no-trait-in-process. In industrial ap- 

plications, one may impose this requirement on a schedule. Another interesting 

feature of the schedules of Figure 1 is that in one the postprocessing is done in the 

reverse order of the preprocessing while in the other the pre- and post-processing 

orders are the same. In some settings, we may require that schedules satisfy one 
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Figure 1: Example schedules 

order or the other. For example, this could simplify the postprocessing if a stack is 

used, by the master, to maintain a record of jobs in process. Similarly, if the master 

uses a queue to maintain this information, we might require that the postprocessing 

be done in the same relative order as the preprocessing. Another discipline that 

might be imposed on the master is to complete all the preprocessing tasks before 

beginning the first postprocessing task. Both of the schedules of Figure 1 obey this 

discipline. 

Similar requirements may be imposed in our consolidator example. This time 

suppose that all the raw material is loaded on a single truck and that the slaves are 

uniformly spaced. Whenever the truck stops, it has to wait at the slave location 

while the material for that location is unloaded and checked. This constitutes the 

preprocessing. When the truck returns to pick up the finished goods, it must again 

wait to load and check. This constitutes the postprocessing. If the truck route is 

circular, then the pre- and post-processing orders are the same. If the route is linear, 

then the postprocessing is done when the truck is returning to its point of origin 

and so is done in the reverse order of preprocessing. In both cases, all preprocessing 

tasks are done before the first postprocessing task. 

For the case of a single master processor, Sahni [19] has considered order preserv- 

ing sequencing (OPS( 1)) an reverse order sequencing (ROS(l)). In the former d 

case the pre- and post-processing tasks must be processed in the same order while 

in the latter these orders should be in reverse order. Optimal algorithms with com- 

plexity U(nlogn) have been developed for both of these cases. To facilitate later 

developments we provide a description of these algorithms denoted by OOPS(l) 

and OROS( 1) respectively. 
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OOPS(1) 

365 

Step 1. Jobs with cj > aj come first in nondecreasing order of aj + bj 

Step 2. Jobs with cj = aj come next in any order 

Step 3. Jobs with cj < aj come last in nonincreasing order of bj + cj 

Step 4. Generate the order preserving schedule whose preprocessing tasks are ordered 

according to steps l-3 

OROS(l) 

Step 1. Order the jobs according to nonincreasing order of bj 

Step 2. Generate the reverse order schedule whose preprocessing tasks are ordered 

according to step 1 

The single master problem to minimize makespan with no restriction on the 

relative ordering of tasks of different jobs has not been considered before. We 

refer to this problem as unconstrained minimum finish time or UMFT. In light of 

the strong NP-completeness of the UMFT problem, we develop an approximation 

algorithm in Section 3. 

For master-slave systems with multiple master processors we can distinguish two 

classes of problems. In the first class we require both pre- and post-processing tasks 

to be processed by the same processor; we shall refer to such systems as restricted 

multiple master systems. In the second class we allow the pre- and post-processing 

task of each job to be processed by different processors; we shall refer to such systems 

as unrestricted multiple master systems. For instance, both modes of operation are 

applicable in semiconductor testing in the presence of multiple burn-in ovens. 

For unrestricted multiple master systems we need to be careful about the defini- 

tion of order-preserving and reverse-order schedules as the pre- and post-processing 

tasks of a job may be done by different master processors. 

Definition 1 For multiple master processor systems we shall say that a schedule 

is order preserving iff for every pair of jobs i and j such that the preprocessing of 

i begins before the preprocessing of j, the postprocessing of i completes before or at 

the same time as the postprocessing of j. 
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Definition 2 For multiple master processor systems we shall say that a schedule is 

a reverse order schedule i# for every pair of jobs i and j such that the preprocessing 

of i begins before the preprocessing of j, the postprocessing of i completes after or at 

the same time as the postprocessing of j. 

In Section 4 we will develop unconstrained, order preserving and reverse order 

schedules ior both restricted and unrestricted multiple master systems. 

3 Approximation Algorithms for Unconstrained 

MFT 

In light of the complexity status of UMFT we are motivated to investigate heuristic 

algorithms that have good worst case performance. If S is an unconstrained sched- 

ule, then a straightforward interchange argument shows that we may rearrange the 

master tasks so that all preprocessing tasks complete before any postprocessing task 

starts. Such a rearrangement can be done without increasing the makespan of the 

schedule. Further, the rearranged schedule has no preemptions. We may shift the 

a tasks in the rearranged schedule left so as to start at time 0 and complete at time 

C a; and the b tasks may be shifted left so as to begin as soon as their corresponding 

a tasks complete. The c tasks may be ordered to begin in the same order as the 

b tasks complete. None of these rearrangement operations affects the makespan of 

5’. With this as motivation, we define a canonical schedule to be one which satisfies 

the following properties: 

1. There are no preemptions. 

2. The a tasks begin on the master at time 0 and complete at time Ca;. 

3. The b tasks begin as soon as their corresponding a tasks complete. 

4. The c tasks are done in the same order as the b tasks complete and as soon as 

possible. 

It is evident that for every unconstrained schedule S, there is a corresponding 

canonical schedule with better or the same makespan. So, in the remainder of this 

section we limit ourselves to canonical schedules. Note that a canonical schedule is 
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completely specified by giving the relative order in which the preprocessing tasks 

are done. As a result, such a schedule is defined by a permutation that gives the 

relative order in which the preprocessing tasks are done. We will use the terminology 

i follows (precedes) j to mean i comes after (before) j in the permutation that defines 

the schedule. 

The next theorem finds the worst case performance of an arbitrary canonical 

schedule S. Let Cs be the makespan of the canonical schedule S and C* the 

optimal makespan of UMFT. 

Theorem 1 For any canonical schedule S, g < 2 and the bound is tight. 

Proof: If Cs = C;(a; + ci) then S is optimal and the error bound of 2 is valid. 

Else, Cs > C;(oi + ci) in which case there exists idle time on the master processor. 

Since S is canonical, this idle time will have to precede one or more postprocessing 

tasks. Let ci,, be the last postprocessing task in S that starts immediately after 

its corresponding slave task bi,. Since there is idle time on the master, such an io 

exists. Then, 

cs= c a;t(a;,-t-bi,tc;,)t c Ci < 2C* 
i precedes io i follows io 

since a;, $ bi, + ciO 5 C* and Ci(ai + c;) 5 C*. 

To see that the error bound is tight consider an instance with k + 1 jobs where k 

is an arbitrary positive integer. The first k jobs have processing requirements (1, E, c) 

while the (k + l)-st job has requirements (E, k, c), E < l/k. The schedule S that pro- 

cesses ak+r = 6 last among all preprocessing tasks has makespan Cs = 2k + 2~. The 

schedule S* that processes a&r first among all preprocessing tasks has makespan 

C*=kt(kt2) c and hence g -+ 2 as e -+ 0. o 

In what follows we present a heuristic whose error bound is 9. 

Heuristic H 

Step 1. Let Sr = { i : ai 5 ci} and Sz = {i : ai > ci}. 

Step 2. Reorder the jobs in Sr according to nondecreasing order of bi 
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Step 3. Reorder the jobs in Sa according to nonincreasing order of bi 

Step 4. Generate the canonical schedule in which the a tasks of Sr precede those of Sa 

The complexity of heuristic H is readily seen to be O(nlogn). Let CH be the 

makespan of the schedule generated by the above heuristic. Then, 

Theorem 2 g 2 4 and the bound is tight. 

Proof: Let S* be an optimal schedule for UMFT with makespan C*. Based on the 

processing requirements (a;, bi, c;) of job i, we define an auxiliary problem P’ with 

processing requirements (a:, b:, c:) defined as follows: 

1 

0 if ai 5 Ci; 

{ 

0 
a: = , b:=bi, c+ 

if Ci < a;; 

ai otherwise Ci otherwise 

Note that P’ isn’t a legal instance of UMFT as it contains tasks whose processing 

requirement is zero. However, this doesn’t affect the validity of our proof. 

In P’, all preprocessing tasks in Sr are zero and hence they can precede all 

non-zero preprocessing tasks (i.e. the preprocessing tasks of 52). Similarly, all post- 

processing tasks in Sz are zero and hence they can follow all non-zero postprocessing 

tasks (i.e. the postprocessing tasks of Sr). Also, in P’ every job has either ai = 0 

or c: = 0. 

A straightforward interchange argument shows that there exists an optimal 

schedule for P’ where all postprocessing tasks for which a{ = 0 are ordered in 

nondecreasing order of bi. Similarly, all preprocessing tasks with c: = 0 are ordered 

in nonincreasing order of bi. Therefore, an optimal sequence S’ for P’ looks like: 

S’ a; : i E s2 Ci : i E s* 

0 C’ 

Figure 2: An optimal sequence for P’ 

Note that S’ is the schedule generated by Step 4 of H if applied on P’. Let 

C’ be the makespan of S’. By optimality of S’ we have that C’ 5 C”. From the 

schedule S’ for P’ we generate a schedule S * for the original problem (where the 

processing requirements are (ai, bi,ci)) by appending the tasks a;; i E Sr in the 
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beginning of S’ and the tasks c;; i E .S’z at the end of S’. Note that the resulting 

schedule SH is feasible for the original data because S’ is feasible for the modified 

data and b’ = b;. It is easy to check that SH is the schedule generated by H for the 

input data (ei, bi, c;) i = 1,2, . . . , TZ. 

Let CH be the makespan of SH. Then, by construction 

cH=~‘+Cu;+C~i<C*+~,~(~i+Ci)+~,~(aif’i)= 

iC% iE& 6% 6%! 

= C* + i z(Ui + Ci) < iC* 

t 

since Ci(Ui + Ci) 5 C*. 

To see that the bound of 4 is tight consider an instance that consists of k + 1 

jobs where k is an arbitrary positive integer. The first k jobs have processing 

requirements (l,~, 1) while the (k + 1)-st job has requirements (~,2k,e). For this 

instance we have Sz = 0 and H produces the canonical schedule of Figure 3 a). In 

this the preprocessing tasks of jobs 1 through k are done first, in any order, and 

then that of job k + 1 is done. The makespan is 3k + 26. 

0 k+c 2kf2c 

Figure 3: The bound of f is tight 

An optimal solution with makespan 2k + 26 is depicted in Figure 3 b) and hence 

CH 3kt2s 3 
c*= -+- 

2k+2c 2 

as E * 0. This completes the proof of the theorem. CI 

4 Multiple Master Systems 

A versatile heuristic, general, that obtains multimaster schedules with an error 

bound of at most 2 is developed in Section 4.1. For the case of reversed order 
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sequencing a heuristic with worst case error bound 2 - $ (m is the number of 

master processors) is presented in Section 4.2. 

4.1 A General Heuristic 

The heuristic general may be used for both restricted and unrestricted systems as 

well as when constraints are placed between the orders in which the pre- and post- 

processing tasks are executed. Before presenting this heuristic, we define the first 

available machine (FAM) rule. In this, jobs are assigned to master processors one- 

at-a-time. Each job has a time t; associated with it and the jobs are considered in 

a given order 0. When a job is considered, it is assigned to the master on which the 

sum of the times of already assigned jobs is the least (ties are broken arbitrarily). 

Heuristic general(m) 

Step 1. For each job, let ti = a; + ci. Sort the jobs so that tl 2 tz 2 . . . 2 t,. 

Step 2. Consider the jobs in this order and use the FAM rule to assign jobs to masters. 

Step 3. On each master, schedule the preprocessing tasks in any order from time 0 to 

time T where T is the sum of the preprocessing tasks of the jobs assigned to this 

master. The slave tasks are scheduled to begin as soon as their corresponding 

preprocessing tasks are complete. The postprocessing tasks are scheduled to 

begin as soon after the completion of their slave tasks as is feasible. 

The heuristic general(m) constructs schedules with the property that each job’s 

pre- and post-processing tasks are done by the same master. Hence the schedules 

are feasible for both the restricted and unrestricted master models. The complexity 

of the heuristic is readily seen to be O(nlog n). 

J&t (y--al be the makespan of the schedule generated by heuristic general. Let 

GJMFT~~~C~MFT~ respectively, be the makespans of the optimal unrestricted and 

restricted master system schedules. 

Theorem 3 Cgeneral/C~i,wFT 5 2 and Cgenera’/C&FT 5 2. 

Proof: Since CGfiIFT 5 C21\l,T, it is sufficient to show that Cgenera’/C;MFT 5 2. 

Assume that on the k’th master the last postprocessing task completes at time 

Cgenera’. If there is no idle time on this master, then from step 2 it follows that 
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cg enera’ 5 i fJ(Ui + Ci) t (U[ + Cl) 5 i $(Ui t Ci) + G(Ul t Cl) 

t=l r=l 

where 1 is the last job assigned to master k by the FAM rule. Since, CGMFT 2 

A Cy=l(ui + c;) and CGMFT 2 al + CI, we get 

penera’ < C&q + m-l 
- 1 --C~~J~T=(~-$)GMFT 

m 

Cgener=‘/C&FT 5 2 - -L m 

If the k’th master has idle time, then from step 3 it follows that there is a job q 

scheduled on this master such that the master is busy from time 0 to the start of b, 

and again from the finish of b, to time C general. Let Q be the set of jobs assigned 

to this master in step 2. 

Cgenera' L C( i u 4 c i) t bq = C(ui t Ci) - (~9 + Cq) + (up t bq t Cq) 
&Q iEQ 

From step 2, it follows that CieQ(ei+ci) 5 5 ~~z'=l(~~+c;)f~(~~+~~) where 

I is the last job assigned to the master in step 2. Because of the ordering of step 1, 

al + CL < a, + I+. Hence, 

Each term on the right hand side of the above inequaiity is easily seen to be no 

more than CcMFT. Hence, Cgenerai < 2C;MFT. - 

Combining the bounds for the two cases, we get CgeneralfCt&lFT 5 2. •i 

To see that the bound of 2 is a tight one, consider the n(m- 1)+2 job instance in 

which the first job’s pre-, slave, and post-processing tasks are given by (n-c, E, c/2), 

the next n(m - 1) job task times are (l/2, E, l/2) and the last job has times (6, n, E). 

Here, 0 < E < l/2. The jobs have been given in the order produced in step 1. 

The heuristic assigns jobs 1 and n(m - 1) + 2 to master 1. The remaining jobs are 

distributed evenly across the remaining masters. If in step 3, the first master is 

scheduled to process al first, then Cgenera’ = 2n + E. However, C{;,,,,,, = C&r,, 

= n + 2.5~. The ratio approaches 2 as E -+ 0. 
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Heuristic general may be used to obtain order preserving and reverse order 

schedules by modifying step 3 to produce such schedules. In fact, since optimal 

single master order preserving and reverse order schedules can be obtained in poly- 

nomial time ([19]), step 3 can generate optimal schedules using the jobs assigned 

to each master. Since the proof of Theorem 3 does not rely on how the schedule 

is constructed in step 3, the error bound of 2 applies even for the case of order 

preserving and reverse order schedules. 

4.2 Restricted Reverse Order Schedules 

In this subsection we develop an approximation algorithm for restricted multiple 

master systems in which each master processor is required to process its postpro- 

cessing tasks in an order that is the reverse of the order in which it processes 

its preprocessing tasks. This problem is abbreviated as ROS(m) (reverse order 

scheduling with m masters). The OROS(l) algorithm provided in Section 2 solves 

optimally the ROS(l) problem. 

The approximation algorithm, Heuristic ROS(m), given below obtains schedules 

with an error bound no more than 2 - l/m. 

Heuristic ROS(m) 

Step 1. Sort the jobs so that bl 2 b2 > . . . > b,. 

Step 2. Consider the jobs in this order and use the FAM rule to assign jobs to masters 

using ti = ai + Cie 

Step 3. On each master, schedule the preprocessing tasks in the order the jobs were 

assigned to the master. Schedule the postprocessing tasks in the reverse order 

and to begin as soon as possible after all preprocessing tasks complete. 

Note that in step 1, we obtain the ordering needed to construct an OROS(l) 

for the n jobs and that in step 3 the jobs assigned to each master are scheduled to 

form an OROS(1) for that master. The complexity of ROS(m) is easily seen to 

be O(nlogn). To establish the error bound, we need to first establish two other 

results. This is done in Lemmata 1 and 2. The error bound itself is established in 

Theorem 4. 
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Let I, I’, and I” be three sets of jobs. I = {(oi,b;,ci)ll 5 i 2 n}, 1’ has n jobs 

defined by u: = C: = (oi + q)/2 and b: = bi, and I” has n jobs defined by a: = cy 

= (ei + ci)/(2m) and 6: = b;. Let C;(m), C;,(m), and C&(m), respectively, denote 

the makespans of the OROS(m) for I, I’, and I”. 

Lemma 1 C;(m) = C;,(m) for all m. 

Proof: Let the optimal schedules for I and I’ be S;(m) and S;,(m), respectively. In 

S;(m), consider a job b with ok # ck. Let p be the master processor on which job Ic 

is scheduled in S;(m). If Uk < ck, then increase the time for which the preprocessing 

of k is scheduled to a/k = (ak+ck)/2 and reduce the time for which its postprocessing 

is scheduled to ci = (ak + ck)/2. This will require us to shift right by uk - ek all 

tasks of jobs whose preprocessing is scheduled after the preprocessing of job k on 

master p and also the slave and postprocessing tasks of job k. This transformation 

does not increase the schedule length. A similar transformation can be made when 

ak > Ck. By applying this transformation to all jobs with ei # ci, we transform 

S;(m) into a feasible reverse order m master schedule for I’ without increasing the 

schedule length. So, C;,(m) 2 C;(m). 

Using a reverse transformation, we can transform S;,(m) into a feasible reverse 

order schedule for I without increasing the schedule length. So, C;(m) 5 C;,(m). 

Hence, C;(m) = C;,(m). u 

Lemma 2 C&(l) 5 C;(m) for all m. 

Proof: From Lemma 1, it follows that it is sufficient to show that C;,,(l) 5 C;,(m). 

In S;,(m), we may assume that the preprocessing tasks on each master are scheduled 

continuously (i.e., with no idle time) from time zero to the time the last preprocess- 

ing task on that master completes (this may require us to shift some preprocessing 

tasks to the left). Also, we may assume that the postprocessing tasks are scheduled 

continuously from the start of the first postprocessing task on the master to time 

C;,(m) (this may require us to shift some postprocessing tasks to the right). Let 15;: 

and Bi, respectively, denote the finish time of a: and the start time of c: in S;,(m). 

Since o: = C: = +(a; + ci), it follows that Fi = C;,(m) - Bi for all i. Assume that 

the jobs are numbered SO that Fi 5 F;+, , 1 < i < n. Hence, B; 2 Bi+r , 1 5 i < n. 
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Since Fi 5 Fi::+l, 1 5 i < n, mlG;: 2 Cj,, CA: or Fj 2 (& ai)/m. SO, C;,(m) - 

Bi 2 (Cj,, aj)/m = (Cj,, c[i)/m. Since, C;,(m) 1 4 + b: + (C;,(m) - B;) 2 

(~&,(a~ + c$))/m + b:, for all i, we get 

Now, consider the reverse order schedule S,/(l) obtained by scheduling the pre- 

processing tasks of I” in the order 1,2, . . ., n. In this schedule, we may assume that 

the preprocessing tasks are scheduled continuously and the slave and postprocess- 

ing tasks are scheduled as early as is feasible. Let Cl,,(l) be its makespan. Clearly, 

C;,,(l) 5 C&l). If there is no idle time on the master, then C’III = cjn=r(a$’ $ CT) 

= (I$l(a5 + c:))/m < Ejn=l(uj + c;)/m + b: I m~i{(&(a$ t ci))/m + 61) 

I C;,(m). 

If there is idle time on the master, then there is a Ic such that C’II~ = &r(ay+ 

cy) + bl = (J’&(ai + cq))/m + bk 5 max;{(~&,(a~ t ci))/m t b:} < C;,(m). 

So, C;,,(l) 5 C,))(l) 5 C;,(m) = C;(m). Cl 

Effectively, Lemmata 1 and 2 show that the makespan of the schedule produced 

by OROS(l) on I” is a lower bound on the optimal makespan value for ROS(m) 

which is denoted by C;(m). The following theorem makes use of this result. 

Theorem 4 Let Cpos (m) be the makespan of the schedule generated by ROS(m) 

on instance I. C~os(m)/C;(m) < 2 - l/m and this bound is tight. 

Proof: Assume that the jobs are numbered so that bi 2 b;+l, 1 5 i < n. Using 

the transformations of Lemma 1, we can transform SfO”(m) into a schedule for I’ 

that has the same makespan. Let this schedule be .9,1(m). In this schedule, we may 

assume that the preprocessing tasks on each master are scheduled continuously from 

time zero to the time the last preprocessing task on that master completes and that 

the postprocessing tasks are scheduled continuously from the start of the first post- 

processing task on the master to time @OS(m). Let F; and Bi, respectively, denote 

the finish time of u: and the start time of c: in SFoS(m). From the application of 

the FAM rule in step 2 of ROS(m), it follows that 
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If there is no idle time on at least one of the masters, then let Q be the set of jobs 

processed by any master, say k, with no idle time. If 1 is the last job preprocessed on 

the k-th master, it follows that Cfos (m) = &Q(a: + c:) 5 5 c;zl u; + *a;+ 

&&c; + +c; = ic;&zj + c;) + *(u; f c;> 5 c;,(m) + *C;,(m) = 

c;(m) + y+;(m). 

If all masters have idle time, then CpO”(m) = maxi{J’i + b: •l- Coos - Bi} 

5 max;{&&(a> + cj) $ *(a: + c:) + 6:). Now consider the instance I”. In 

OROS(I), the preprocessing tasks of I” are scheduled in the order 1, 2, . = a, 7t 

because bi 2 bi+l. AS a result, C;,,(l) 2 maxi{? C&r($ + c>) + bi}. From 

Lemma 2, we know that C;(m) 2 C;,,(l). So, CFos(m) 5 masr;{$C&(a~+c~)+ 

v(u: t c;) t b:} I C;,,(m) t eC;,,(m) 5 C;(m) t *C;(m). 

Hence, C~os(m)/C~(m) 5 2 - l/m. 

To see that this error bound is tight, consider the m master instance I with 

n = m(m - 1) + 1 jobs. The first m(m - 1) of these jobs have (a;, bi,c;) = (1, E, E), 

where E is a small number. The last job has (an,bn,cn) = (m,c/2,c). The job 

numbering corresponds to that produced in step 1 of ROS(m). In step 2, each 

master is assigned m - 1 of the first m(m - 1) jobs and one of them gets job n in 

addition. The optimal schedule for this master has makespan 2m - 1 + c/2 + mc. 

The OROS( ) h d 1 m SC e u e assigns job n alone to one of the m masters and distributes 

the remaining jobs equally among the remaining m - 1 masters. So, C;(m) = 

m + (m f 1)~. So, Cfos(m)/C;(m) = (2m - 1 + c/2 f me)/(m + (m f 1)~) which 

tends to 2 - l/m (from below) as E -+ 0. q 

Note that the above result has some similarities with the problem of minimiz- 

ing makespan in a two-stage hybrid flowshop considered by Lee and Vairaktarakis 

[ll]. In this problem preprocessing tasks are executed on the machines of stage 1, 

postprocessing tasks are executed on the machines of stage 2, and the slave tasks 

are null. A heuristic with bound 2 - i was developed for that problem as well. 
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5 Conclusion 

SARTAJ SAHNl AND GEORGE VAIRAKTARAKIS 

In this paper we introduced various applications of the master-slave paradigm. We 

proposed fast bounded performance approximation algorithms to schedule both sin- 

gle master and multiple master systems. Our future research direction will be to- 

wards new variations of the master-slave model that are of practical relevance. 
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